If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x-90=0
a = 5; b = 7; c = -90;
Δ = b2-4ac
Δ = 72-4·5·(-90)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-43}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+43}{2*5}=\frac{36}{10} =3+3/5 $
| 7r+13=20 | | t/64=9/8 | | -29=4y-5 | | 53=−4g−5 | | 15a2+45=0 | | 4x+5+5x+9=7x+2x+11 | | 82=-6x+4(x+17) | | 12.25q=0.5q+3.75 | | 26=2(u+5)-6u | | X2+100x-1200=0 | | -28+3m=-48 | | 2(c+3)=6 | | 2x+3=-14 | | 7t+11=18. | | 4b+4=16 | | 3(r+3)=12 | | 0=-5x^2-90x+127 | | 1+4y=29 | | 5q+15=20 | | 106=-7x+5(-3x-14) | | 2(p+7)=20 | | b/6+18=18 | | 2x+3=4x+6-(2x+3 | | q+18/18=1 | | 2c+1=16 | | 2s+9=20 | | 15b+5=20 | | 3(d+3)=12 | | 3r+1=6 | | 153=m*9 | | 12b+2=14 | | 2u+12=18 |